The Galerkin Method for the Equations Governing Formation of Salt
Fingers: Implementation in Mathematica

RMM

December 14, 2003

In this paper we consider the stability of solutions of the system of equations
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Here u = (u(z, 2,t), w(z, z,t)) is the velocity field of a two dimensional motion, 7" and S are the temperature
and salinity variables, py is the reference density of the flow, kKt and kg are the molecular diffusion
coeflicients of temperature and salt, p is pressure, g is the acceleration of gravity and v is the viscosity.
These equations are based on the Boussinesq approximation of the full equations of motion in which the
density variation is only taken into account in the bouyancy term. We assume a linear constitutive equation
that relates the denisty p to temperature and salinity:

p=po(l — (T —To) + B(S — So) (2)

where pg, Tp and Sy are reference (or mean) density, temperature and salinity, and « and 3 are coefficients of
thermal and haline expansions. See References [1], [2], [3] for more information on the physical background
of (1) and (2). In particular we assume that the velocity v is divergence free:

div u = 0. 3)
Since the flow is two-dimensional and u satisfies (3) we represent the velocity by a stream function ¢(z, z, t)
defined by
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We can now eliminate p from (1) by taking the curl of the balance of linear momentum equation in (1)
and use (2) and (4) to arrive at

88A—t¢ + J (¢, AY) = —g(aTy — BS;) + vA%Y (5)

where J is the jacobian operator. Similarly, the last two equations in (1) take the form

ag_’ltﬂ + J(waT) = _1/)13 + "CTATa
B+ J(h,S) =g+ ksAS.



We begin our analysis (5)-(6) by noting that the uniform state u = 0 and uniform gradient states of
T =Tp =az and S = Sy = bz form a solution to (1), (2) and (3) if we choose p = —pggz, the hydrostatic
pressure, where g = —gk with k the standard unit vector in the upward z-direction. Following [1] we
denote the uniform gradients by I'r and —I"g and consider solutions ¢, T' and S that are deviations from
the uniform state, that is, we define 77 and S’ so that

TIT’—I—FTZ, SZSI—{-FS,Z. (7)

Because of the way T and S enter (5) and (6) quantities 77 and S’ simply replace 7" and S in these
equations. So the following set of equations constitute the governing equations that we wish to study:

0% 1 J(p, AY) = —g(aTl, — BSL) + vA%p,

BT’ +J@,T") = —tpp + kpAT', (8)
35’ +J(4, ") =y + ksAS'.

Our next task is to determine the non-dimensionalize euqations (9).

1 Non-dimensional Governing Equations

Following [1] we non-dimensionalize the above equations by the following transformation
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where
d = (vkr/g9al7) MY 7 = d?/kp,h = dT'p, s = dls. (10)

We consider equations of motion
%+ I (0, AY) =0T} — 5, + oA,

LI, T) = —+ AT (11)
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where 1 is the stream function and 7" and S’ are deviations from the steady-state solutions of temperature
and salinity. We look for solutions of the form

¢(xayat) = izvzl Zyanl amn(t)¢mn(xay)a
T,(.’IJ, Y, t) = ZnN:1 Z’an:l bmn (t)¢mn (.’L’, y)’ (12)
S'(z,y,) = X3l et Cmn(t)dma (2, 9),

where we choose
Omn(z,y) = sinnz sinmy, (13)

as the basis in the Galerkin scheme. This choice is motivated by our desire to solve (11) in the domain
(0,7) x (0, ) with zero boundary conditions. Next we construct the three operators 77, T» and T3 from
the left-sides of (11), i.e.,

Ty, T, S = ‘W' + J(¢, AY) — T + Z8! — oA,
o[y, T, 8" =2+ J(y,T') + 9, — AT, (14)
Ta[, T', S = 35’ + J(1h, 8") — g — TAS'.




The final step of the Galerkin scheme is to take the inner product of (14) with a tyoical basis element in
(13):
(Tl [77[)’ T,a Sl]a d’l]) = Oa
(T2[¢aT,aSI]’¢ij) 207 for Za] = 1"">N7 (15)
(T3 [77[)’ T,a S,]’ d’l]) =0.

The simplest approximation to the solution to (11) is obtained when we let N = 1 in (15). In that case
the solution triple (v, T",S") is approximated by

Y(z,y,t) = a11(t)sinzsiny,
T'(z,y,t) = b11(t)sinzsiny, (16)
S'(z,y,t) = c11(t)sinzsiny.

In equations (16) only the very first mode (the fundamental mode) is taken into consideration. In this
special case (15) reduce to the following set of uncoupled linear equations for the unknowns a1, by; and

C11-
al, = —20a,,
bln = —2b,,, (17)
¢, =—2rc,.

These equations show that the only equilibrium solution a;; = 0, b;; = 0 and ¢;; = 0 is stable as long

as 7 > 0. In other words, the equilibrium solution of (11), given by % = 0 (no motion) and 7" = S’ = 0

(corresponsing to homogeneous distribuation of temperature and salinity) is linearly stable as long as 7 > 0.
By contrast we set N = 2 our approximation takes the form

Y(z,y,t) = a11(t)sinzsiny + a12(t) sinz sin 2y + a2y (t) sin 2z siny + age(t) sinzsiny,
T'(z,y,t) = by1(t)sinzsiny + by2(t) sinz sin 2y + by () sin 2z siny + bao(t) sinz siny, (18)
S'"(z,y,t) = c11(t)sinzsiny + c12(t) sinz sin 2y + c91(t) sin 2z siny + coo(t) sinz sin y.

The representations in (18) are already considerably richer than (16) because they take into account the
interactions between two modes. The equations in (17) now take the form

(af, = —820(111 + g—;b213— ?jr—”Rczl,3
blu = 37%21 — 2b,; — Zambm + Zambmv
C,u = T30 — 27-611 - %0’21612 + %azlcua
alu = _85‘7“12 _3 %auam + %%2 - ﬁcnv
bllz = 37822 + Zazlbu - 5b12 - Zaubzn

4 6:12 = E_ﬂ-azz + 3%amcu - ?7—012 - %allc217 (19)
Cp = 370y — 7012Cyy F 1841 Cpp — OTCyy,
a121 = %auam - 50’(121 - 185_071—b11 + ﬁcua
blzl = g_:au - %alzbn + %aublz — 5b,,,
a:zz = _880a22 - %bIZ + %6127
Cpy = 370y, — 8TCy,,

\ bl22 - _%alz — 8b,,

Note that equations (19) are not only coupled, they are nonlinear. Moreover, unlike the equations in (17),
(19) show the interplay among all of the physical parameters R, o and 7.



Our goal now is to study the behavior of equilibrium solutions of (19) in terms of the three physical
parameters. In particular, we would be very interested in locating values of R, o and 7 for which the
zero (equilibrium) solution in (18) is unstable. It is our belief that, analogous to Rayleigh’s analysis of the
Boussinesq equations which led to the discovery of the celebrated Rayleigh-Bénard cells, when the zero
solution is unstable, the resulting stable solution will have features that are common with salt fingers.
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